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O. INTRODUCTION

Let M' be a complex manifold and let Me M' be a relatively compact
open subset whose boundary M o is a Coo submanifold of M'. The purpose of
this paper is to investigate the question ofextending pseudocomplex structures
on M o sufficiently close to the one induced by the embedding of M o in M' to
complex structures on M. It is established that the extension holds if the
following conditions are satisfied:

I. Hq(M, An T'* Q9 T'* = 0 for q = n - 2, n -1, where n = dime
M = dimeM'; T' and T'* are the holomorphic tangent and cotangent
bundles over M', and An stands for the nth exterior algebra bundle, i.e.,
K = An T'* is the canonical bundle. Furthermore, K Q9 T'* is the sheaf
of germs of holomorphic sections of K Q9 T'*, and Hq(M, K Q9 T'*) is the
qth cohomology group of M with coefficients in K Q9 T'*.

II. The Levi form of Me has at least two positive eigenvalues.

We observe that I holds if M is a Stein manifold, and if M' is Stein and M
is strongly pseudoconvex, then both I and II hold. If one assumes II, then
there are other conditions on M' which are of purely geometric nature and
imply 1. This can be seen as follows.

Let Cp,q(M, T'*) be the space of all C"" T'*-valued (p, q)-forms which are
extendible to M', and let a* be the formal adjoint of the Cauchy-Riemann
operator awith respect to some metric g on M'. We denote by ,Ytp,q the
subspace of Cp,q(M, T'*) consisting of the harmonic forms which satisfy the
boundary conditions of the a-Neumann problem. If II holds, then the

* This research was supported in part by an NSF grant, GP 33942Xl. Originally sub
mitted to and accepted for publication in Advances in Mathematics.

Copyright © 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved.

281

ISSN 0021-9045



282 GARO K. KIREMIDJIAN

theory developed in [2, 4] shows that :/En,q is isomorphic to Hq(M, K ® T'*)
for q = n - 1, n - 2. By the Poincare duality, :/En,q is isomorphic to
:/E~,q = {u I E CO,q(M, T') 8u = 8*u = 0, tu = O} for q = 1,2, where tu
denotes the complex tangential part of u on M o (see Section 2). Hence
condition I is equivalent to t)J.e following statement: there exists a constant
Co > 0 such that

(0.1)

for all U E CO,q(M, T' with tu = 0, q = 1, 2. Here II [I is the L2-norm with
respect to g.

Now, in an earlier work of A. Andreotti and E. Vesentini (On deformations
of discontinuous groups, Acta Math. (1964, 112, it is established (see pp.
275-7 that ifg is a Kahler-Einstein metric with sufficiently negative curvature,
then for all x E M' and U E CO,q(M, T'), q = 1,2,

(0.2)

where D = 88* + 8*8, * is the Hodge star-operator, and{, >00 is the inner
product at x.

Hence, by Stokes' theorem (0.2) implies (0.1) for all u with tu = t8*u = 0
and this is precisely what is needed for the proof of the main result of this
paper (see Sections 2 and 3).

I would like to thank Professor C. D. Hill for bringing the problem to my
attention and for the number of useful discussions I had with him. I am
deeply indebted to Professor M. Kuranishi for his interest in this work and
for his kindness in making available a copy of [5] which has not yet appeared
in print. Part of this material is used in Section 1.

1. ALMOST PSEUDOCOMPLEX STRUCTURES AND INTEGRABILITY CONDITIONS

Let n = dimcM and let CTMo be the complexification of the real tangent
bundle TMo of M o •

DEFINITION 1.1. An almost pseudocomplex structure on M o is given by a
complex subbundle E" of CTMoof complex fiber dimension n - 1 such that
E' n E" = {O} where E' = E".

DEFINITION 1.2. E" is integrable if for any two sections Land L' of
E" over an open set U of M o , [L, L'] is also a section of E".

There is a natural integrable almost pseudocomplex structure on M o given
by °T" = Til n CTMo , T" = '1". In general, if S is an almost complex
structure on M, i.e., S is a complex subbundle of CTM of fiber complex
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dimension n such that S n S = {O}, then E" = S n CTMo is an almost
pseudocomplex structure on Mo. Moreover, if S is integrable, so is Elf.

Let CT*Me be the complexified cotangent bundle of Mo and let (E").1 C
CT*Mo be the annihilator of E".

DEFINITION 1.3. If Ot, ... , On are differential forms of degree 1 on an open
set U of M o , then we say that they form a defining system of £" over U
if OJ E coo(U, (£").1), 1 ~j ~ n, and, for eachp E U, {O,}, ... , Opn} is a base of
(£;).1 where E; is the fiber of E" over p.

PROPOSITION 1.4. Let E" be an almost pseudocomplex structure on
Then the following conditions are equivalent:

(a) E" is integrable.

(b) If{Ol, ... , On} is a defining system over an open set U, d8 j = Lk u// /\ Ok,
1 ~ j ~ n, for some differential form Uk j of degree 1.

Proof The assertion follows at once from the formula

2dO(L, L') = L . O(L') - L' . O(L) + 8([L, L'D (Ll)

which holds for any differential form () of degree 1 and for all sections
L' of CTMo . Q.E.D.

We now choose a real subbundle F of TMo of real fiber dimension 1
such that

°T' = °T". (1

The existence of such F can be seen as follows. Since 0T' E8 0T" is invariant
under conjugation, there is a real vector subbundle °T of TMo such that
0T' E8 0T" = COT. By dimension consideration we have that °T is of real
fiber codimension 1. Hence any supplementary vector subbundle F of °T in
TMo satisfies (1.2). F is by no means unique but we pick one such F and
fix it once and for all.

Let p': CTM ---->- T' be the projection. It follows from (1.2) that CT' E8 CF)n
(T" I Me) = {O} where T" I M o is the restriction of T" to Mo. Hence
p' I(°T' E8 CF) is an isomorphism. We denote by

T : T' I M o ---->- 0T' E8 CF, (1.3)

the inverse of p, ICT' E8 CF). It is clear from the definition that T is the
identity on ny' and

T(p'X) = X for all X E CF. (l

Let () be a differential form of degree r.
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DEFINITION 1.5. We say that 0 is of type (0, r)o if O(Xl , .•• , X r) = 0
whenever anyone of Xl' ...' X r is a section of 0T' EB CF.

DEFINITION 1.6. An almost pseudocomplex structure E" on M o is of
finite distance to °T" if 7T" I E" : E" --+ °T" is an isomorphism where 7T":
CTMo -+ °T" is the projection with respect to the decomposition (1.2).

It is easy to see that in this case we can write

E" = {X - CP1(X) I X E °T"}. (1.5)

Here rp1 : °T" -+ 0T' EB CF is a homomorphism defined by rp1 =
-(id - 7T") ° (7T" [E")-l. Let cP = 7"-1 ° CP1 : °T" --+ T' I Mo. Then rp is a
T' [ Mo-valued differential form of type (0, 1)0. Hence we obtain the following

PROPOSITION 1.7. If E" is an almost pseudocomplex structure on M o of
finite distance to °T", then there exists a unique T' I Mo-valude differential form
rp of type (0, 1)0 such that

E" = {X - 7" ° rp(X) I XE or"}. (1.6)

Conversely, if 7T' : CTM(} ->- 0T' is the projection with respect to the
decomposition (1.2) and rp is a T' I Mo-valued differential form of type
(0, 1)0 with the property that at each point x E Me the map ax ° ax: °T; -+ °T;
does not have eigenvalue 1, a = 7T' ° 7" ° rp, then formula (1.6) defines an
almost pseudocomplex structure on M o .

DEFINITION 1.8. E" defined by (1.6) is called the almost pseudocomplex
structure determined by rp relative to 0T" and is denoted by °T; .

Let h: M' --+ IR be a function defined as follows: Ih(p) [ = geodesic
distance from p to M o , h(p) > 0 if p 1= M, and h(p) < 0 if p E M. Clearly
there exists a neighborhood N of M o in M' such that h is of class COO and
dh 01= 0 in N. If X E CTMo , <X, dh) = 0 where <X, dh) is the evaluation of
the differential form dh at X. Then <p'X, dh) = -<p"X, dh), and since h is
real-valued <p'X, dh) is a purely imaginary number for X E TMo • We note
that p": CTM -+ T" is the projection. On the other hand, since p'F n 0T' ={O},
<p'X, dh) 01= 0 for any nonzero X E F. Thus, for each x E Mo , there is a
unique Xx E iF such that <p'X"" dh) = 1. We set X", = P",' - P~' P~ = 1'",',
P",' E T.,', P; E T;. Hence we have sections p', P" of T' I M o , T" I M o ,
respectively, satisfying the following conditions

<P', dh) = <P", dh) = 1.

P' - P" c: iF, P' =1''', (1.7)

(1.8)
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We can extend P' (resp., P") to a section of T' (resp., T"). Let [J be a
coordinate neighborhood in N with coordinates z = (z1, ..., zn). We set
hi = oh/8zj

, h, = Tij = 8h/8z j , P' = Lj pi8/8zi , P" = Lj p
'
8/ozi , pi = pi.

By (1.8) we have that

LPjhj = LP'h, = 1.
j

On U = Mo n [J we define

(1

Zj = 8/8zj - hjP', 1 ~j ~ n. (LlO)

It follows from (1.8) that <Zj, dh) = 0 and hence Zj is a section of 0T'.
Moreover, ZI ,... , Zn generate °T' and satisfy the relation

(1.11)

If i: U - tJ is the injection, d'h = L hjdzi and d'h = d'h, we set

1 ~ k ~ n. (1.12)

We observe that i*dh = i*(d'h + d"h) = di*h = 0 since h = °on Mo.
The differential forms Zi, ... , zn are of type (0, l)b and generate coo(U, (OT")*)
where CT")* is the dual bundle of °T". By (1.12) we have that

Lh"Z" = o.
"

Hence any differential form 0/ of type (0, r)b can be written as

'\' pl,I.__ - - 0LJ "r lk 2"· -kif' ~ •

Now, since P' - P" E CF, we have by (104) that

TP' = P' _P".

(1.13)

(1.14)

(1.15)

(1.

Since Zj E 0T' and T lOT' = id, T(8/oz i ) = T(Zj + hjP') = Zj + hjP' ~
hjP" = %zj - hjP". We will write fJT/8z j instead of T(8/8z j

). Thus we have
that

oT/8zi = 8/8zi - hjP" E CTMo , 1 ~j ~ n. (1.17)
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If g is a differentiable function on 0,

dg = I [(og/ozle) dz le + (og/8zle) dzle]
k

= L (8g/ozk)(dzk - pie d"h) + (P"g) dh + I (og/8zk - hkF"g) dzk.
k k

Hence, iff is a differentiable function on U, we can write

df = I [(8f18zk) 'lk + Wflozk) i* dzk].
k

(1.18)

The operator Lk (o/8zk) 'lk is the boundary Cauchy-Riemann operator 8b.
Hence, (1.18) can be rewritten as

df = 8d + I (81'/8z le) i* dzk'.

"
(1.19)

We are now in a position to derive the integrability condition for the almost
pseudocomplex structure aT; in a convenient form. In terms of the local
coordinates (z1, ... , xn ) we have that rp = L" rpk(8/8zk) where rpk is a scalar
valued differential form of type (0, l)b . It is then easy to check that

81 = i*dz1 + rp\ ... , 8n = i*dzn + rpn (1.20)

form a defining system of aT;. Hence, Proposition 1.4 implies that or; is
integrable if and only if

l~k<:,n (1.21)

for any coordinate system (z1, ... , zn).
First of all, we note that, by (1.19), for any differentiable function f on U

we have df= ad - L" (8'f/8zk) rpk (mod 0\..., On). Hence

dZk == I [hzrpZ 1\ (tJbpk - (8Tpk/8zi) rpi) + pkrpl 1\ (tJbh z - (8Thzl8zi) rpi)],
i,l

mod(81,... , On). (1.22)

drpk = I [drplC 1\ 'lZ + rpl" dZZJ
Z

I (8brpl" - (8 T rpZk/8zi) rpi) 1\ ZZ + I hirpi 1\ rpile(tJbpl - (8Tpl/8zi) rpi),
j,l i,i,l

mod(01, ... , en). (1.23)
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We observe that 8bZk = 0 because Zk - dzk is zero on 0T'. Then condition
(1.23) can be written as

d'Pk - 8b'Pk - I (OT'Pik/ozj) 'Pi A Z} + I hi'Pi A 'Pik(8bpi - (oTpl/ozj) 'P j
),

j, 1 i,j,l

mod(a!, ... , an). (1.24)

Since T' is a hoiomorphic vector bundle, for any T' I Mo-valued differential
form 'P = Lk 'PkO/OZk, Lk (8b'Pk)(O/OZk) is independent of the choice of z and
hence represents a T' I Mo-valued form which we denote by 8b f{J. If we write
the right-hand side of (1.24) as (/jk mod (&\..., en) it is not difficult to check
that (/j = Lk (/jk(O/OZk) is a well-defined T' i Mo-valued differential form of
type (0, 2)b . Now (1.21) and (1.24) imply the following

PROPOSITION 1.9. The almost pseudocomplex structure °T~ is integrable
if and only if (/j = O.

Let T~ be an almost complex structure on M determined by W E CO,l(M, T').

PROPOSITION 1.10. T~ n CTMo = aT; if and only if

where

'Pii = I wi/Col' - hipk + hi'Piipk),
i,k

1 ~ I ~ 11, (1.25)

'P = I 'PlZ1(%zi)
i,l

and
Oik = 1,

= 0,
if k = I,
if k ~ t.

Proof It follows from Proposition 1.7 that aT; is spanned by

ZtP = Zi - I 'Pii(O,/ozi) = O/OZI - I (hi - hi'Pii) pi(%zi) - I 'Pli(O/ozi)
j i,i j

1 ~ I ~ n.
i,j

Since T~ = {X - w(X)1 X E Til}, a vector Li ,i(%zi) + Li ,ieo/8zi) belongs
to T; if and only if 'i = - Lk wki,k. Hence ZlP E T~ if and only if (1.25)
holds. Q.E.D.

Let tfi = L tfikl'"k,dzk1 A'" A dZk' be a differential form of type (0, r)on
M. Then we can write i*if; = tif; mod (i*d"h) where

(1.26)

and we say that tif; is the complex tangential part of if;. If, moreover, tfi is a
differential form with values in a holomorphic vector bundle of rank m, then
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we can locally express f as an m-tuple of scalar-valued forms (fl, ..., fm) and
define tf as (tfl, ... , tfm).

We now assume that rp is °T'-valued. This means that rp is a form of type
(0, l)b with values in T' I M o such that TO rp = rp. In terms of local co
ordinates z = (zl, ... , zn) the last condition can be written as

1 ::::;; I ::::;; n. (1.27)

In this case, if w E CO,l(M, T') such that T: can be defined, then (1.13),
(1.25), (1.26), and (1.27) imply that r; n CTMo = aT; if and only if rp = two
Let Q = 8w - [w, w] where w = Lu, wi"dzi(%zk) and [w, w] = Li,k.l
(owNozi) wi A dz1(0/OZk).

PROPOSITION 1.11. Let rp be a T' I Mo-valued differential form of type
(0, l)b satisfying (1.27). Let (p = Lk (P"(O/OZk) be the form defined by (1.24).
IfwE CO,l(M, T') is such that rp = tw, then

tQ = (P - I wlp&hi(Pi(%Z"). (1.28)
a.:i,k

Proof Let hi,i = ohi/ozi, hi,j = ohi/ozi, hi,i = ohdozi, and hi,j = ohdozi.
Since rp/ = w/ - hi Ll wlpl, (1.13) and the fact that Li,j hi.i Zi A Zi = °

imply that Li,i (orpl/ozi) Zi A Zi = Li,j (ow//OZi) Zi A Zi; Thus 8brp =
t8w. Furthermore,

I (OTrplk/Ozi) rpi A Zl = trw, w]" - I L wlp&w';hf,jZi A Zl. (1.29)
i.l '" i,j, I

By assumption

L: hiw/ = hi I hjwip&
j ct.,j

onMo , 1 ::::;; i ~ n. (1.30)

We now apply the tangential differential operator 8/oz1 - hlP' to the
equality (1.30) and sum over i and I after multiplying by Zi A Zl. Since
hj,f = hf,j we have that

L hf,jW';Zi A Zl = - I Mow//oz1) Zi A Zl = L hit 8wi = I hj 8b rpi.
i,i,l i,j,l i i

(1.31)

On the other hand, condition (1.27) implies that (Pj = 8brpi - Li (OTrpt//
OZi) Ti A Zk and Lj hj(oTrpt//ozi) = - Lj Tt/(oThi/ozi) = - Li hi,iTt/' But
hi,i = hj,i , so Li,j hi,jrpi A rpj = 0. Hence

I hj(pi = I hj 8b rpi.
i i

(1.32)

Finally, we obtain the desired result by combining (1.29), (1.31), and (1.32).
Q.E.D.
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2. A NONCOERCIVE BOUNDARY VALUE PROBLEM
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In this section we consider a boundary value problem which will playa
crucial role in the extension of pseudocomplex structures. Our discussion
will be based on the fundamentally important results that have been obtained
in [2, 3].

Let a* be the formal adjoint of awith respect to the metric gin M'. Let
wE CO,l(M, T). We will assume that for some sufficiently large integer
k > 0 the Sobolev k-norm II w Ilk is sufficiently small with respect to various
absolute constants which will appear in the sequel and will be denoted by C.
For u, v EO CO,l(M, T) we consider the bilinear form

Q(u, v) = (au, av) (a*u, a*v) - 2([w, u], 8v). (2.1)

Let {U~} be a finite set of holomorphic coordinate neighborhoods in M'
which cover M, and let z~\ ..., z~n be holomorphic coordinates in [j~. For
u EO Cp,q(M, T) we define the seminorms

where u = LI,J,v u}';>"dz/ A dz/(8/8z~v) on U~, 1= {il < ... < ip }, J =
Ul < ... <j,,} and dz/ = dZ~l A ••• A dz~'P, dz,/ = dZ~l A ... A dZ~". We define
E2(U) = u !1 2 + SMo IU12 dS + II u ii~. Here II u !1 2 is the L2-norm on Cp,q(M, T')
and dS is the volume element on Mo . Let vu be the complex normal com
ponent of u, i.e., vu consists of all terms in the local expression of i*u which
are divisible by i*dh, and let Wp,q(M, T) = {u E Cp,q(M, T')I vu = O}.
Assume q > 0, and for each point on M o the Levi form either has n - q
po:;itive eigenvalues or q + I negative eigenvalues. Then the basic estimate
of Kahn and Morrey holds (see [2, pp. 130-133; 4, pp. 458-459 and pp. 463
464]), i.e., for all u E Wp,q

£2(u) :'( COl U li 2 + II au !1 2 ~ !I a*u in (2.2)

Let ~" = {u EO CO'''(M, T')I tu = O}. It is easily verified that u EO~" if and
only if *#u E Wn,n-q(M, T'*) where T* is the dual bundle of T, * is the
Hodge star-operator, and # is defined as follows: if u(~) = L: u(~)v(8/oz~v) is
the local expression of u on the coordinate neighborhood U and ( g(d"v) are
the components of the metric tensor, then (#u)<~) = L~.v g(~),,)j uW; dz~".
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Hence condition II of the Introduction implies that for all u E ~q, q = 1,2,

II U 11 2 + flu 12 dS + II u II; ~ C(II u 11 2 + II 8u 112 + II 8*u 112). (2.3)
Mo

On the other hand, it follows from condition I in the Introduction that
if u E ~q and 8u = 8*u = 0, then u = 0, q = 1,2. Since the norm []I2(U) =
[]I(u, u), []I(u, v) = (u, v) + (8u, 8v) + (8*u, 8*v) is completely continuous
with respect to the L 2-norm 1II1 , we have that II u 11 2 ~ COl 8u 11 2 + II 8*u 11 2) for
all u E ~q with q = 1,2. This together with (2.3) implies that for all u, v E ~1

I Q'(u, v)1 2 ~ CQo(u, u) Qo(v, v),

1Q(u, u)1 ;?: C II U 11 2,

C1[]12(U) ~ 1 Q(u, u)1 ~ C2[]12(U),

C1Qo(u, u) ~ I Q(u, u)1 ~ C2Qo(u, u),

(2.4)

(2.5)

2Qo(u, v) = Q(u, v) + Q(v, u),
(2.6)

2(-1)1/2 Q'(u, v) = Q(u, v) - Q(v, u).
(2.7)

Let ;81 be the completion of ~1 with respect to the norm []I(u). Then the
preceding inequalities imply that for each square-integrable T'-valued form
f of type (0, 1) there exists a unique u E ;81 for which

Q(u, v) = (J, v) for all v E~. (2.8)

Now the space ~1 satisfies the requirements (a), (b), (c) given in [3],
pp. 451-452. Moreover, conditions (i), (ii)', (iii) of the same paper, pp. 452
453, hold for the bilinear form Q(u, v). However, condition (ii) is not satis
fied, i.e., the integrand of Q'(u, v) contains products of first-order derivatives
of u and v. Hence, we cannot directly conclude that iff E co.1(M, T'), then
u E~. We now proceed to show that one could overcome this difficulty and
obtain the desired regularity result. First we observe that u is Coo in the
interior of M because Q is strongly elliptic.

It is easy to see that each point of M o has a neighborhood U which admits
a boundary coordinate system, i.e., a system {t\ ..., t 2n-\ h}, where h is the
function defined in Section 1, the t i are Coo real-valued functions, and at
every point of U, <dti, dh) = 0, 1 ~ i ~ 2n - 1. Let ~:.n = {(t\ ... , t 2n-\ h)1
h ~ O}. If r is a Coo function with compact support in ~:'n we define the partial
Fourier transform

reg, h) = f exp(-(_1)1/2 t . g) ret, h) dt,
~2n-l

t = (t\ ... , t 2n- 1),

2n-1
t .g = L tigi.

i~l

(2.9)
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For real s the operator Ts is given by

Then the tangential s-norm of r is

III rills = Ii Tsr II .
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(2.10)

(2.11)

Let Dir = or/oti, 1 ~j ~ 2n - 1 be the tangential derivatives of rand
Dh = or/oh be the normal derivative of r. Then the expression II! Dr is
given by

Iii Dr = I!I Dhr III~ + r (2.12)

We may assume that (oh, oh> = 1 at every point of U. We can then define
a special moving frame on U to be a set ~1, ... , ~n of (1, D)-forms on U such
that ~n = oh and (~i, ~i> = oij at every point of U. If u E Cp,q(M, T), then,
on Un M, u = (u!, ... , un) where u" = LlJ U~J~lj, ~lj = ~il 1\ •.. 1\ ~ip /\

~h 1\ ••. 1\ ~jq, 1 ~ ex ~ n. If I' is a differential function on U, then r~i =
(dr, ~i> and r~i = (dr, ~i>. Hence au" = L U~ni~i 1\ ~lj + ... and a*u" =

(-1)P+l Lm,l,H Er::H)U;<mHW.~IH+ ... where H runs through all the (q - 1)
tuples and (mH> is the ordered q-tuple consisting of m and H, Er::H) is the
sign of the permutation taking mH into (mH>, and the dots denote terms
which do not contain differential components. It is clear that tu = 0 if and
only if U~j = 0 on Mo whenever n tf= J. The seminorms II u II~ = L;,",1,]

II U~Ji;:i 11 2 and II u II? = Li,rx,I,J II U~ni 11 2 are equivalent to II U 11~ and II u II~,

respectively. If the support of u lies in Un M, then we set ill U = Lu,v
iii u~] and III Du ill. = LI.J,v III DU~J III •• We also have

I(u, v)! ~ III u Ills III v 111-8 • (2.

A linear operator A ; Cooo(IR~n) -+ coo(IR~n) is called an operator of tan
gential order p if for each real s there is a constant Cs such that III Ar Ill. ~
c. III r llls+p for all r E Cooo(IR_n), i.e., for all Coo functions r with compact
support on IR~n. Let 9"(IR~n) be the space of all Coo functions which together
with their derivatives die out faster than any power of It! + Ih lat infinity.
It is well known that the operator defined by multiplication by such a function
is of tangential order zero. Hence, if L is a first-order differential operator
with coefficients in 9"(IR~n), then

III Lr 1!ls ~ CS III Dr ills. (2.14)

Let ~ be the set of all operators A of tangential order p such that A =
~TpYJ with ~, Tj E Cooo(IR~n). Each A E~ has the following properties: A and
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its adjoint A * are of tangential order p; A - A * is of tangential order p - 1;
(Ar)(t,O) = 0 for all r E Co",,(~~n) with r(t,O) = 0; if L is a first-order dif
ferential operator, then for each real s there is a constant C. such that for all
r E Co",,(~~n)

[II [A, L] r 11[. ~ C. III Dr 111s+p-l ,

III[A - A*, L] r III. ~ C. 1[1 Dr 111s+p-2,

III [A, [A, L]] r III. ~ C. III Dr 111.+2p-2 •

[A, L] = AL - LA, (2.15)

(2.16)

(2.17)

(2.21)

If u E Cp,q(M, T'), ~ and 7J have their supports in Un M we define Au =
L AU~J~IJ, A Ed". The regularity at the boundary follows from certain a
priori estimates derived in [3, pp. 464-466 and pp. 471-472]. A close examina
tion of the proof of these estimates shows that they hold if we have the
following

LEMMA 2.1. There is a constant Cp such that for all A E d" and all u E )81

with support in U n M

I Q(Au, Au)1 ~ Cp(1 Q(u, A*Au)1 + III Du 111~-I)' (2.18)

Proof. For forms u we denote by Lu the bracket 2[w, u]. Since Q(u, v) =
D(u, v) - (Lu, 8v) is a first-order bilinear form, Lemma 3.1 of [3, p. 460],
gives that

12Q(Au, Au) - Q(A*Au, u) - Q(u, A*Au)1 ~ Cp ' III Du 111;-1' (2.19)

On the other hand, a straightforward calculation shows that

(LA *Au, 8u) = (Lu, 8A*Au) + 2([L, A] u, 8Au)

+ 2(LAu, [A, 8] u) + ([L, A* - A] Au, 8u)

+ (Lu, [A* - A, 8] Au) + ([[L, A], A] u, 8u)

+ (Lu, [[A, 8], A] u) + ([L, A] u, (A * - A) 8u)

+ ((A * - A) Lu, [A, 8] u) + ([L, A] u, [A, 8] u)

+ ([A, L] u, [A, 8] u).

Since A Ed", Au E )81. Then (2.3), (2.5), and (2.15) with s = 0 imply that

([L, A] u, 8Au) = 0(111 Du 1110-1 . I Q(Au, Au)11 / 2),

(LAu, [A, 8] u) = O(II! Du Illp-l . I Q(Au, Au)11 / 2),

where B = OCR) if IB I ~ Cp IR I for some constant Cp depending on p.
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Applying (2.13) with s = 1 ~ p, (2.14) with s = p - 1, and (2.16) with
s = 1 - p and r = Au, we have that ([L, A * - A] Au, au) = 0(111 DAu
III Du 1110-1)' By (2.12) and (2.15) III DAu 111~1 = III DhAu 1!1~1 + IllAu !Il~ =
0(111 ADhu i!1~1 + 111[Dh,A] U 111~1 + III u III;) = O(!I! Dhu 111;-1 + III Du 111:-2) =
0(111 Du III~-l)' Thus

([L, A* - A] Au, au) = 0(111 Du iI[;-l' (2.22)

The same arguments can be used to estimate the fifth term on the right of
(2.21). Hence

(Lu, [A * - A, a] Au) = 0(111 Du Ili~-l)' (2.23)

Applying (2.13) with s = 1 - p, (2.14) with s = p - 1, and (2.17) with
s = 1 - p we obtain

([[L, A], A] u, au) = 0(111 Du 1I1~-1)'

(Lu, [[A, a], A] u) = O(lIi Du ill;-I)'
(2.24)

Finally, Schwarz's inequality, (2.15), and the fact that A - A* is of
tangential order p - 1 imply that each of the remaining terms on the right
hand side of (2.20) is 0(111 Du 111;-1)'

Now, (2.20), (2.21), (2.22), (2.23), (2.24), and the preceding remark give
the inequality

(LA*Au, au)

= (Lu, aA*Au) + O(I!I Du 1110-1 . I Q(Au, Au 11/2) + 0(111 Du iil;-l)' (2.25)

If K stands for aor 8*, then we have the relation

(KA *Au, Ku) = (Ku, KA *Au) + 2 Re(KAu, [A, K] u)

+ 2(-1)1/2 Im{([K, A*..,- A] Au, Ku) + ([[K, A], A] u, Ku)

+ ([K, A] u, (A * - A) Ku) + ([K, A] u, [A, K] u)

+ ([K, A] u, KAu)}. (2.26)

It is now clear that the arguments used in the derivation of (2.25) also
imply

D(A *Au, u) = D(u, A *Au) + O( III Du 1110-1 . IQ(Au, Au Jl/2) + O(lil Du Ill;-I)'
(2.27)
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Hence, by combining (2.25) and (2.27) we have

Q(A*Au, u)

= Q(u, A *Au) + 0(111 Du Illp-1 . I Q(Au, Au)Il/2) + 0(111 Du IlIp~l)' (2.28)

The desired estimate (2.18) is obtained with the aid of (2.19) and (2.28).
Q.E.D.

If II lis denotes the Sobolev s-norm over M, then the a priori estimates for
the solution u of (2.8) also give the inequality

II u lim ~ Cs II fils . (2.29)

Remark 2.2. As a consequence of Stokes' theorem, the unique solution
u Em1 of (2.8) has the property t8*u = O. Assume thatfE CO,l(M, T') and
8*f = O. Then another application of Stokes' theorem gives 88*u = 0, and
hence 8*u = O. Thus the equation 8*(8u - 2[w, uD = fhas a unique solution
u Em1 which satisfies (2.29)

Our next task is to investigate the dependence of the constant Cs in (2.29)
onw.

LEMMA 2.3. For each s > 1 there exists a constant Cs such that for all r
and a in Cooo([f;£~n)

II[Ts , a] r II ~ CsCll a Iln+2111 r Ills-1 + II a Iln+2+s II r II). (2.30)

Proof [Ts , a] r = Tsar - aTsr

T";:Jr(g, h) = (l + Ig 1
2)s/2 f a(7], h) reg - 7], h) d7],

cff.r(g, h) = f a(7], h)(l + I g- 7] [2)S/2 reg - 7], h) d7].

A routine computation shows that

1(1 + [g 12)"/2 - (1 + I g - 7] 12)S/2 I

~ CsC(I + I g - 7] 12)S-1/2 I 7] I + (1 + [7] [2)"/2). (2.31)

Hence by the Schwarz inequality and (2.31) we have

I[f:', a] reg, h)1 2

~ Cs lJ (1 + 17] 12) I a(7], h)1 2d7] . f (1 + 1T 12)S-1 I reT, h)1 2dT

+ f (1 + I T} 1
2)S I a(T}, h)12 dT} . f [1'(T, h)[2 dTl·
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Now, let p(h) = f (1 + I 7] 12)1 ii(7], h)[2 d7]. Then p(O) - p(h) = f~ p'( y)
'"'-'

Since Dhii(7], h) = Dha(7], h), it follows that I p(h)] ~ I p(G)] + Iii Da . Here
p(O) is the Sobolev I-norm on 1R2n-1 which we denote by I a 11' By the
Sobolev inequalities Ia 11 + III Da III is bounded by II a . A similar
reasoning shows that

(232)

We note that the last inequality takes care of the cases when s is an integer
and s is a half-integer. This completes the proof. Q.E.D.

We now take a covering{ V~}ofM and a refinement {U~} such that ua cc V".
By identifying V" n M with an open set in 1R2n we define the operator Tsa on
Ua which is the usual operator Ts multiplied by a function in Co"'(V" n
and identically one on UCX. Then another way of defining the tangential
s-norm for a form u is III u Ills = L~ II Tscxacxu 11 2 where (acx)2 is a partition of
unity with respect to the covering {Ucx}.

THEOREM 2.4. Let u be the unique solution of (2.8) with tu = t8*u = O.
Then

II U 11;;'+1 ~ C,nClifll;' + II w

Proof We write

fli~). (2.33)

Ii 8Ts"a"u 11 2 + II 8*Tscxaau 11 2 - (LTs"a"u, aTsCXa"u)

= (TscxacxDwu, Tscxa"u) + ([a, Ts~] acxu, aTs"a"u) + (Ts"[a; a"] u, aT/'a"u)

+ ([a*, Tscx] a"au, Tscxacxu) + (Ts"[8*, a"l au, Ts"a~u)

+ ([a*, Tscx] a"U, a*Tscxacxu) + (Tscx[a*, acx ]u, 8*Tscxacxu) (2.34)

+ ([a, TsCX] acxa*u, Tscxa"u) + (T,CX[8, acx] a*u, Tscxaau)

- ([L, Tscx] a"u, aTsrY.a"'u) - (TsrY.[L, acx ] u, aTs"'arY.)

- ([a*, Tscx] a"'Lu, Tscxa"u) - (TsrY.[8*, acx ]Lu, TsarY.u)

where Dwu = Du - 2a*[w, u] = Du - 8*Lu.
We will denote by e and C(e) small and large constants, respectively.

Using (2.15) we get that the second and sixth terms are bounded by
C(e)ll! Dacxu 1]1;-1 + e{11 aTscxa",u 11 2 + II 8* TscxarY.U In The third and seventh
terms are obviously bounded by C(e)lll u + e{ll aTsrY.acxu 11 2 + 118*T,rY.a cxu In
Application of the commutator to the first half of the inner product and
integration by parts imply that the fourth, fifth, eighth, and ninth terms imply
that they are bounded by C(e)11 u II~ + e{1I 8TscxarY.1I 2 + Ii 8*TsrY.acxu 1!2}. Since
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[Ts , aDj] r = [Ts , a] Djr, we see by Lemma 2.3 that the tenth and the
thirteenth terms are bounded by c(€)11 w 11~+31[1 Du 111;-1 + €{II 8T."'u"'U 112+
111I LT."'u"'u 112} + c(€)11 w 11~+3+s II UIIi. Finally, the eleventh term can obviously
be bounded by c(€)I[ u II; + €II 8Ts"'u"'U 112, and another application of the
commutator and integration by parts leads to bounding the twelfth term by
c(€)11 u II; + €[I LTs"'u"'U 112. At the beginning of this paragraph we assumed
that I[ w Ilk is small with respect to various constants for sufficiently large k.
We may now take, for example, k > n + 3. Then from (2.34) we obtain (by
using (2.3) and condition I in the Introduction)

II 8Ts"'u"'U 112+ II 8*T."'u"'U 112

~ c(1(Ts"'uj, Ts"'u"'u) I + III Du 111.-1 + II u lis + II w 11~+s II U Iii). (2.35)

On the other hand, the left-hand side of (2.35) is bounded from below by
III DT."'u"'u 111-112' Also, I(T."'u"'f, Ts"'u"'u) I ~ III Ts"'u'illl-l/211[ T."'u"'U 1[11/2 ~ C(€)
III T."'u'iIII~1/2 + €III T."'u"'u Illi/2 . Summing over ex we have

III Du 111;-112 ~ C(11i1 111;-1/2 + III Du 111;-1 + II U II; + II w 11~+s II U[Ii). (2.36)

Repeating the argument for the term III Du 111,+1 twice we get

1[1 u 1[1;+112 ~ C(II/II;-1/2 + II u II; + II w ll~+s II u Iii). (2.37)

We can now take s = m + t where m is an integer. By a standard argument
which is given in [3, pp. 465 and 466], and which uses the ellipticity of the
quadratic form Q, we can also estimate all derivatives of u and obtain

II u [1,;+1 ~ C(II/II;;' + II u 11;;'+1/2 + II w 11~+s II u Iii). (2.38)

Finally, by reduction we get (2.33).

(2.39)

Q.E.D.

3. EXTENSIONS OF INTEGRABLE ALMOST PSEUDOCOMPLEX STRUCTURES

It is obvious that if S is a complex structure on M, E" = S n CTMo is an
integrable almost pseudocomplex structure on Mo. We will show that if
conditions I and II in the Introduction are satisfied, then any integrable
E" C 0T' EEl °T" can be extended to a complex structure on M provided E" is
sufficiently close to °T".
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For functions r E Cooo(lRd) and a real number p we define a smoothing
operator that has been introduced by Nash in [7] by the formula

R'(p) rex) = JpdX(py) rex - y) dy (3.1)

where X(x) is a function whose Fourier transform X(t) == 1 for I g I < t and
is identically equal to zero for I t I > 1 and which is Coo in g. Then one can
establish the following inequalities

II R'(p) r :(; const pm II r Ilk, II r - R'(p) r ilk :(; constp-m I! r

(3,2)

Next we define Seeley's extension operator E; Coro(IfLk) -->- COro(lRk)
[see [8]) by

Er(x', y) = rex', y),

ro
= I akr(x', bky),

~o

for y:(; 0,

for y > 0,
(3.3)

where x' = (x', ... , X k- 1), and ak and hk are chosen so that h = -21e and
1:;=0 akbkm = 1 for every integer m ~ O.

This operator has the property that it is bounded in the Sobolev norms
over lR_k and IRk, respectively,

II Er 11m :(; const II r (3.4)

If n : coo(lRk) --+ coolR_k) is the restriction, then R"(p) = n 0 R'(p) 0 E ;
Cooo(lR_k) --+ Cooo(IR_Ie) satisfies the same inequalities as (3.2) with the Sobolev
norms taken over IR_d.

We now imbed the differentiable double M of M in some euclidean space.
Then the technique developed by Nash in [7] shows that the smoothing
operator can be defined for arbitrary tensors on M. Furthermore, if U is a
boundary coordinate neighborhood in M and :T = {:T~~:::} is a compactly
supported tensor in U (\ M, then E:T = {E:T~f::} is a well-defined compact
ly-supported tensor in U. Conversely, if:T is compactly-supported in U, then
:T = {n:T~%:::} is well-defined and compactly supported in U (1 M. By
using partition of unity we can thus conclude that for each real number p we
have a linear map R(p); CO,q(M, T) --+ CO,q(M, T') such that the following
property is satisfied; for any integers m, k there exists a constant Cm,k such
that for all U E CO,q(M, T')

. (3.5)
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THEOREM 3.1. Assume that M and M'satisfy conditions I and II in the
Introduction. Let ({' be a T' I Mo-valued Coo differential form of type (0, l)b
with sufficiently small Sobolev k-norm I ({' Ik on Mo for some sufficiently
larger integer k, and I ({' I" ~ const Po" for all 0 ~ "- ~ "-0 , where Po > 1 is a
sufficiently large real number and '\0 > k· is a sufficiently large integer. Then
there exists W EO co.I(M, T) such that G(w) = 0 and tw = ({' where G(w) =
8*(8w - [w, wD.

Proof We will follow the method of Moser given in [6]. If w EO CO,I(M, T)
we can write w = lw + vwd"h and we observe that i*lw = tw and vw EO

CO,O(M, T). We set i*vw = vw. Take Wo EO CO,I(M, T) such that two = ({',
and II Wo II" ~ const I ({' I". We can regard Wo as an approximate solution
of G(w) = 0 and observe that II G(wo)lik-2 is sufficiently small if the same is
true for I ({' Ik . The actual solution will be constructed as a limit of a sequence
of approximate solutions Wo, WI, ... , Wj ,....

Let Po, PI ,..., pj ,... be a sequence of real numbers with Po as in the state
ment of the theorem and Pi+1 = p;/2.

For w EO CO,I(M, T) we define G'(w)(u) = lims-;o S-I(G(W + su) -G(w)) =
8*(8u - 2[w, uD.

Assume that Wi , 0 ~ i ~j, have already been constructed such that

II Wi Ilk ~ Yj, for small Yj, (3.6)

II Wi II" ~ Cpl, for some constant C and 4 ~ "- ~ "-0' (3.7)

WHI = Wi + lUi + R(Pi+1) Vuid"h, (3.8)

where

We remark that (3.6) and (3.7) hold for W o ' The theory developed in
Section 2 allows us to do (3.8) because of the first inequality of (3.5) with
m = 0 and the inductive assumption (3.6). Observe that by construction
tWi = ({'.

For any I we have

(In (2.33) we have replaced the integer k by k - 3, i.e., we take k > n + 6
where n = dime M.)

We first note that tWi+1 = tWj = ({'. We now verify (3.7) for Wj+l' Using
(3.5), (3.9), and the inductive assumptions (3.6) and (3.7) we get

II VWj+1 II" ~ II VWj II" + II R(pj+1) VUj II" ~ CPj" + C".OPj~1 II VUj 110
(3.10)
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The last quantity is less than or equal to !CP;+l ifPo is sufficiently large and 1]

sufficiently small. Furthermore, we can establish the following. If, in general,
Owu = J, with tu =:= t8*u= 0, then OJu = if + N, where N stands for
terms involving the components of u, their first derivatives, and a linear
combination of some of the second derivatives of the components of vu.
Since lu = 0 on M o , the coercive estimates obtained in [I] hold and we have

for some constant C},'. (3.1 1)

We now apply this argument to U = Uj . Again with the aid of (3.5) and (3.9)
we can establish that for some constant C~

II lUj Ih ~ C~(\I G(R(Pm)) Wj 11},-2

+ II R(PHI) w~ IIHk-all G(R(pj+l) wj)llo + II vUj

~ C~(C}'-2,O II Wj II}, + C},-3.kPi+l Wj Ilk II Wj liz + II VUj (3.

The same arguments, applied to VUj give

[' - " :0;::: C (C I' 'I + C 1.-2 I' II II )II VUj II}, '" }, }"IPHI 1Wj I}, },-2,kPj+1 Wj ,Ik , Wj ,12 • (3.13)

Since lWi+1 = lWj + lUj we can conclude as before that if r; is sufficiently
small and Po is sufficiently large, than IllwHIII}, ~ !CP;+l if A. ;;? 4. This and
(3,10) give (3.7) for i = j + 1.

Now, if W = U + v, u, V E CO,1(M, T'), then G(w) = G(u) + G(v) 
28*[u, v]. Having this remark in mind, an application of (3.5), (3.9), (3.12)
yields the following chain of estimates (for simplicity we will denote by Ck
constants, depending only on k and ,\.0)

II Wm - Wj Ilk ~ ck{lltUj Ilk +Pm II VUj Ilk-I}

~ Ck{P~~: II G(R(pj+1)) Wj Ilk-z + pi':l II vU 11"+k}

~ Ck{p~~:(11 G(wJlk-2 + II G(R(pj+l) Wj - wj)lik-z (3.

+ II R(Pi+I) Wj - Wj Ilk II Wj Ilk + pi':l II Wj 11,,+Zk-2}

~ Ck{P~~; II G(wj)llk-2 + pi':l II Wj 11,,+2k-2}'

We will determine a shortly but for now the first condition we impose is
a + 2k - 2 ~,\o , Then

In the next set of estimates we again let Ck be a constant depending only on
k and A.. First of all, we have
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G(Wj_I) = G(Wj_I - R(pj) Wj-I) + G(R(pj) Wj-I)

- 28*[Wj_I - R(pj) Wj_I , R(pj) Wj-l]:

G'(Wj_I)(Wj - Wj-I) = 8*(8(Wj - Wj-l) - 2[Wj_1 , Wj - Wj-l])

= 8*(8(Wj - Wj-l) - 2[Wj_I - R(pj) Wj-I , Wj - Wj-l]

- 2[R(pj) Wj_l , Wj - Wj-l])

= G'(R(pj) Wj_I)(Wj - Wj-l) - 28*[Wj_1

- R(pj) Wj_l' Wj - Wj-l]'

These relations together with (3.5), (3.6), (3.7), (3.8), and (3.16) imply that

II G(Wj)llk-2

:::.;;; ck{11 iiUj_1 - R(pj) iiUj_1 Ilk + II Wj_l - R(pj) Wj_l Ilk + II Wj - Wj_l lin

<; Ck{pjU II iiUj_1 Ilu+k + pjU II Wj_l Ilu+k + II Wj - Wj_l lin

:::.;;; Ck{pjU II Wj_l Ilu+2k-2 + II Wj - Wj-l lin

:::.;;; Ck{pjUp~~:k-2 + II Wj - Wj-l II~}.

Combining (3.15) and (3.17) we have

(3.17)

II II <: {k-2 -u u+2k-2 + k-211 112+ -u U+2k-2}Wj+l - Wj k "" Ck Pj+lPj Pj-l PHI Wj - Wj_l k Pj+lPj .

Set Ej+l = P't+I II Wj+l -Wj Ilk, where Il- as well as a are to be determined.
Then the above inequality becomes

E. <: C {p"+k-2p~Upu+2k-2 + p~u+"p·u+2k-2 + p~l/2("-k)-3E.2} (3.18)
3+1 "" k j+l 3 3-1 3+1 j J 3 •

We first choose Il- > 0 such that -t(1l- - k) -3 <; O. With the choice of Il- we
now determine a> 0 such that i(1l- + k - 2) - a + i(a + k - 2) <; -1
and -ta + ill- + 2k - 2 <; -1. If "0 is sufficiently large we will still have
a + 2k - 2 :::.;;; "0' Hence (3.18) implies the inequality

(3.19)

If one chooses Po <; 4Ck2 and EI = PIli WI - Wo Ilk:::';;; 1/2ck (which is certainly
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possible if 7j is sufficiently small) one finds that Ei < Ij2ck for 0 < i <} + L
We can now verify (3.6) for W1+1 .

j+l . 1 ro
II Wi+1 - Wo lik < L II w" - W,,_1 Ilk < 2c- L p-;"',

,,~1 k ,,~1

(3.20)

Thus, II w1+111 < II W o Ilk + Ij2ck L:~lr" < 7) if I0f{J ile is sufficiently small and
Po is sufficiently large. Thus the induction step is completed and we have the
sequence W o , WI"'" Wj ,... of approximate solution. This is a Cauchy
sequence in H~,I(M, T'), the completion of CO.l(M, T') in the Sobolev
k-norm, because

Hm 1 Hm

II WHm - Wj lile < L II w'" - w"_lllle < 2 L P;'" < C'pi':I' (3.21)
,,~i+l Ck ,,~i+l

Let W = lim j ...,,,,, Wj in H~'\M, T'). By the Sobolev imbedding theorem we
actually have that W is of class Cso (i.e., the coefficients of w have continuous
derivatives of all order up to so) if k > So + n. If k is sufficiently large, so is
So and (3.17) shows that G(w) = O. Since tWj = f{J for all}, we have tw = 9.

It remains to show that w is actually of class cro, i.e., w E co.l(M, T).
We will prove by induction on s ~ Ao the following statement: there

exists a constant Cs such that

for all sufficiently large j. (3.22)3

We note that (3.7) gives (3.22)8 for all s < AOj~~d all j. In o~der to verify
(3.22)8+1 we observe that II Wj - Wo 118+1 < L",~o II W"+1 - Wet IIS+1 < CS+l,O
L::~ il U" IIS+1' An application of (3.9) with I - s + 1 gives the inequality
II U", li8+1 < cs' II R(p"+1) W" IIS+k-l < cs'C8-1,kp~+i '!7 for some constant c/.
H II II ,< II II I 'c C . "J-l s-I,<·C 8+1'f ..ence ,Wj 8+1'-': Wo HI I Cs s-l,lc Hl,O 7) k.-",=OP,,+1 '-':0 sPi 1 ] IS

sufficiently large.
We are now in a position to show that the sequence Wo, WI,'''' Wi ,... is a

Cauchy sequence in every Sobolev s-norm. For this purpose we consider the
following two statements

(3.23h

(3.24)3+1

for all sufficiently largej and for some constant Cs'. We have already establis
hed (3.24h and (3.23h follows from (3.17) by taking (J' sufficiently large which
is possible if Ao is sufficiently large.

We first show that (3.23)8 and (3.24)8 imply (3.24)8+1' Since G(R(pJ+1) Wj)
=G(wJ) - G(Wj - R(Pi+1) Wi) + 28*[Wj - R(Pm) Wi , RePi+l) Wj], by
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applying (3.5), (3.9), and (3.22)8 we obtain a chain of inequalities for all
sufficiently large j with various constants denoted by ds :

II Wi+! - Wj 118+1 ~ d8 P::i(I + II Wj 118) II G(R(pi+!) Wj Ils-l

~ d8P::i(I + [[ Wj 118)(11 G(Wj)lis-l + pi':'l II Wj 11*+1

+ pi':'l II Wj 11*+111 Wj 11m) (3.25)

~ d8P::i(I + II Wj Ils)(11 G(Wj) - R(pi+!) G(wj)118_1

+ II R(PH1) G(wj)118_1 + pi':'IP;+T+1 + pi':'IP;s+2+T)

~ dsp::i(I + II Wj 118)(PH111 G(wj)118-2 + pi':'IP;s+2+T).

Since we assume (3.24)8 the sequence {Wj} is bounded in the 11118-norm.
Thus we obtain (3.24)8+1 with the aid of (3.23)8 if T is sufficiently large and J1,

has been chosen in advance to be sufficiently large with respect to k.
Next we will show that (3.22)8 (for all s) and (3.24)8+1 imply (3.23)8+1 . In

order to do this we first write (3.16) with k replaced by s + 1. Second, we
use the arguments preceding (3.17) and obtain

II G(wj)118_1 ~ ds'{11 VUj_l - R(pj) vUj-lllm

+ II Wj_l - R(pj) Wj_l Ils+1 II Wj - Wj-l 11m + II Wj - Wj_l Ils+l}

~ d8 ' {piT II Wj_l IIT+s+1+k-2 + piT II Wj_l Ils+1+T pi" + pj2"}

(3.26)

for some constant ds'. Hence (3.23)8+1 holds if we choose T sufficiently large.
This completes the induction step and establishes (3.24)8+1 for all s. But this
means that the sequence {Wj} is a Cauchy sequence in every Sobolev s-norm.
Hence W E co.l(M, T'). Q.E.D.

The results in Section 1 indicate that ifthe almost pseudo-complex structure
E" COT' (jj °T" is sufficiently close to °T", then E" = °T; for a unique
T' IMo-valued Coo differential form rp of type (0, l)b satisfying condition
(I.27). On the other hand, it is well known that an almost complex structure
T; on the even-dimensional manifold M induced by a T'-valued Coo form W

of type (0,1) is a complex structure if and only if Q = 8w - [w, w] = 0.
Therefore, in view of Proposition 1.10 we can formulate the extension
problem stated at the beginning of this section as follows.

THEOREM 3.2. Let {M, M'} be a finite manifold, i.e., M is a relatively
compact open subset ofM' with Coo boundary M o , such that conditions I and II
are satisfied. Let rp be a T' I Mo-valued Coo differential form of type (0, l)b
with sufficiently small Sobolev norm I rp Ikfor some sufficiently large integer k.
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Assume that the almost pseudocomplex structure °T; defined by 'P is integrable
and °T; COT' EB 0T". Then there exists wE CO,l(M, T') such that tw = 'P and
Q=O.

Proof By the previous theorem there is w E CO,l(M, T) such that tw = 'P
and 8*Q = O. Furthermore, the properties of the Poisson bracket trivially
imply that 8Q = 2[w, Q]. Since tQ = 0 by Proposition 1.11, we have by
(2.3) the inequality

On the other hand, by condition I we find that

(3.27)

Ii Q II ~ C' II 8Q II for some constant C'. (3.28)

Combining (3.27) and (3.28) we obtain

II 8Q II ~ 21JC(1 + C')li 8Q II . (3.29)

Hence 8Q = 0 if YJ is sufficiently small. Then (3.28) gives Q = O. Q,E.D,
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