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0. INTRODUCTION

Let M’ be a complex manifold and let A4 C M’ be a relatively compact
open subset whose boundary M, is a C= submanifold of M’. The purpose of
this paper is to investigate the question of extending pseudocomplex structures
on M, sufficiently close to the one induced by the embedding of M, in M" to
complex structures on M. It is established that the extension holds if the
following conditions are satisfied:

I H{(M,AN"T*@T'* =0 for ¢ =n — 2, n — 1, where n = dimg
M = dim¢M’; T’ and T'* are the holomorphic tangent and cotangent
bundles over M’, and A" stands for the nth exterior algebra bundle, i.e.,
K = A»T'* is the canonical bundle. Furthermore, KX X T'* is the sheaf
of germs of holomorphic sections of K ® 7T'*, and H{M, K & 7'*) is the
gth cohomology group of M with coefficients in K @ 7'*.

I1. The Levi form of M, has at least two positive eigenvalues.

We observe that I holds if M is a Stein manifold, and if A" is Stein and M
is strongly pseudoconvex, then both I and II hold. If one assumes II, then
there are other conditions on M’ which are of purely geometric nature and
imply I. This can be seen as follows.

Let C?4(M, T'*) be the space of all C* T"*-valued (p, g)-forms which are
extendible to M’, and let &* be the formal adjoint of the Cauchy-Riemann
operator 0 with respect to some metric g on M’. We denote by s#°?? the
subspace of C?¢M, T'*) consisting of the harmonic forms which satisfy the
boundary conditions of the -Neumann problem. If II holds, then the
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theory developed in [2, 4] shows that J#7-¢ is isomorphic to H{M, K @ T'*)
for g =n—1, n— 2. By the Poincaré duality, #¢ is isomorphic to
HG ={uleC(M,T)0u = 6*u =0, tu = 0} for ¢ = 1,2, where fu
denotes the complex tangential part of u on M, (see Section 2). Hence
condition [ is equivalent to the following statement: there exists a constant
¢, > 0 such that

NulP < colll Gu I* + 1 9%u |?) (0.1

for all ue CO«(M, T’ with tu = 0, ¢ = 1, 2. Here || | is the L,-norm with
respect to g.

Now, in an earlier work of A. Andreotti and E. Vesentini (On deformations
of discontinuous groups, Acta Math. (1964 , 112, it is established (see pp.
275-7 thatif g is a K&hler—Finstein metric with sufficiently negative curvature,
then for all xe M’ and ue C*YM, T"), ¢ = 1, 2,

$u, o < (D —+71 O u, w, 0.2)

where [] = 80* 4 %9, * is the Hodge star-operator, and <, ), is the inner
product at x.

Hence, by Stokes’ theorem (0.2) implies (0.1) for all u with fu = t8*u = 0
and this is precisely what is needed for the proof of the main result of this
paper (see Sections 2 and 3).

I would like to thank Professor C. D. Hill for bringing the problem to my
attention and for the number of useful discussions I had with him. I am
deeply indebted to Professor M. Kuranishi for his interest in this work and
for his kindness in making available a copy of [5] which has not yet appeared
in print. Part of this material is used in Section 1.

1. A1MOST PSEUDOCOMPLEX STRUCTURES AND INTEGRABILITY CONDITIONS

Let nn = dimeM and let CTM, be the complexification of the real tangent
bundle TM, of M, . , v

DerNITION 1.1, An almost pseudocomplex structure on M, is given by a
complex subbundle E” of CTM, of complex fiber dimension n — 1 such that
E’' N E” = {0} where E' = E". ~

DermviTioN 1.2. E” is integrable if for any two sections L and L' of
E” over an open set U of M,, [L, L'] is also a section of E”.

There is a natural integrable almost pseudocomplex structure on M, given
by °T" = T"NCTM,, T" = T'. In general, if S is an almost complex
structure on M, i.e., S is a complex subbundle of CTM of fiber complex
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dimension n such that SN S = {0}, then E" = § N CTM, is an almost
pseudocomplex structure on M,. Moreover, if S is integrable, so is E”.

Let CT*M, be the complexified cotangent bundle of M, and let (E")* C
CT*M, be the annihilator of E”.

Dermvtion 1.3, If 6%,..., 67 are differential forms of degree I on an open
set U of M,, then we say that they form a defining system of E” over U
if Gie C=(U, (E"YD, 1 <j < n,and, foreach pe U, {8,1,..., 8,7} is a base of
(E;y- where E, is the fiber of E” over p.

ProrositioN 1.4. - Let E” be an almost pseudocomplex structure on M, .
Then the following conditions are equivalent:

(a) E" is integrable.
(by If{0,..., 0"} is a defining system over an open set U, d6¥ =73, u,’ \ 6%,
1 < j < n, for some differential form u;’ of degree 1.

Proof. The assertion follows at once from the formula
2d0(L, Ly = L-60(L"y — L' - 8(L) + 6({L, L'} (1.1

which holds for any differential form 8 of degree 1 and for all sections L,
L' of CTM,. Q.E.D.

We now choose a real subbundle F of TM, of real fiber dimension 1
such that

CTM, = °T' ®°T" ®CF, °T =°T" (1.2

The existence of such F can be seen as follows. Since °7" @ °T” is invariant
under conjugation, there is a real vector subbundle °7T of T'M, such that
°T" @ °T" = C°T. By dimension consideration we have that °7 is of real
fiber codimension 1. Hence any supplementary vector subbundle F of °7 in
TM, satisfies (1.2). F is by no means unique but we pick one such F and
fix it once and for all.

Let p": CTM — T’ be the projection. It follows from (1.2) that (°7" @ CFN
(T" | My) = {0} where T"| M, is the restriction of 7" to M,. Hence
p 1T @ CF) is an isomorphism. We denote by

7T | My—°T' @ CF, (1.3)

the inverse of p' |(°T" @ CF). It is clear from the definition that = is the
identity on °7" and

p'X) =X for all XeCF. (1.4

Let 4 be a differential form of degree ».
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DerinitioN 1.5, We say that 8 is of type (0,r), if 0(Xy,...., X;) =0
whenever any one of X ,..., X, is a section of °T" @ CF.

DeriNntTion 1.6, An almost pseadocomplex structure E” on M, is of
finite distance to °7” if =" | E” : E” — °T" is an isomorphism where =":
CTM,— °T" is the projection with respect to the decomposition (1.2).

It is easy to see that in this case we can write

E" = {X — ¢y(X) | X€°T"). (L.5)

Here ¢, : °T" — °T" @ CF is & homomorphism defined by ¢; =
—@d — 7)o (@ | E")yL Let 9o =7 log:°T"—>T'|M,. Then ¢ is a
T’ | My-valued differential form of type (0, 1), . Hence we obtain the following

ProrositioN 1.7. If E” is an almost pseudocomplex structure on M, of
Jinite distance to °T", then there exists a unique T' | My-valude differential form
o of type (0, 1), such that

E" ={X—71op(X)| Xe°T". (1.6)

Conversely, if #': CTM, —°T' is the projection with respect to the
decomposition (1.2) and ¢ is a 7" | My-valued differential form of type
(0, 1), with the property that at each point x € M, the map 6, - 6, : °T,, — °T,
does not have eigenvalue 1, ¢ == 7’ o 70 @, then formula (1.6) defines an
almost pseudocomplex structure on M, .

DeriniTION 1.8. E” defined by (1.6) is called the almost pseudocomplex
structure determined by ¢ relative to °7” and is denoted by °T,, .

Let #: M’ —~ R be a function defined as follows: | A(p)| = geodesic
distance from p to M, , ip) > 0if p¢ M, and h(p) < 0 if pe M. Clearly
there exists a neighborhood N of M, in M’ such that 4 is of class C* and
dh == 0in N. If X CTM,, <X, dhy = 0 where {X, dh)> is the evaluation of
the differential form 4k at X. Then {p'X, dh) = —{p"X, dh), and since 4 is
real-valued <{p’X, dh) is a purely imaginary number for X ¢ TM,. We note
that p”: CTM — T"is the projection. On the other hand, since p’F N °T"={0},
{p'X, dh> £ 0 for any nonzero X € F. Thus, for each x e M, , there is a
unique X, € iF such that {p'X,, dh) = 1. Weset X, = P,/ — P., P, = P,
P eT,), P,cT,. Hence we have sections P, P" of T'| My, T" | My,
respectively, satisfying the following conditions

P —P'CiF, P =P, %))
(P, dhy = (P, dhy = 1. (1.8)
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We can extend P’ (resp., P") to a section of 7" (resp., T"). Let U be a

coordinate neighborhood in N with coordinates z = (z%,..., z%). We set

hy = ohjozi, by = by = Ohjoz,, P' = ¥, piaje, P" = ¥, plojed, pi = P,
By (1.8) we have that

S pihy =Y plhy = 1. (1.9)
3 J

On U = M, N U we define
7, = 8joz, — P, 1<j<n (1.10)

1t follows from (1.8) that <Z;, dh) = 0 and hence Z; is a section of °7".
Moreover, Z, ,..., Z, generate °T” and satisfy the refation

Y piz; = 0. (1.11)

7
If i: U~ U is the injection, d'h = ¥ hdz and d'h = d'h, we set
ZF = i* dzk — pFi* d"h = i* dzF - pFivd'h, 1 <k <n (1.12)
We observe that i*dh = i*(d'h + d"h) = di*h = 0 since h =0 on M,.
The differential forms Z¢,..., Z" are of type (0, 1), and generate C(U, (°T")*%)
where (°T")* is the dual bundle of °7”. By (1.12) we have that

Y 1 ZF = 0. (1.13)
k

Hence any differential form  of type (0, ), can be written as
=Yy z,b,;l...,;TZ"fl A A ZF (1.14)
> P,k = O. (1.15)
Now, since P' — P" € CF, we have by (1.4) that
TP =P — P". (1.16)
Since Z;€°T’ and 7| °7T" = id, 7(0/0z%) = «(Z; + WPy = Z; + WP —

hP" = 9]ozd — h;P". We will write 07/0z7 instead of +(9/8z%). Thus we have
that

ooz = 8oz — WP e CTM,, 1<j<n. (1.17)
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If g is a differentiable function on U,
dg = 3. [(0g/ez") dz* + (bg/ozZ") dz*]
y]

=Y (0g/oz*)(dz* — p*d"h) + (P'g) dh + Y (0g/oz* — hyP"g) dz*.
k k
Hence, if f'is a differentiable function on U, we can write
df ==Y [(8f]ez*) Z* + (&7f]oz¥) i* dz*]. (1.18)
&

The operator 3, (8/6z%) Z* is the boundary Cauchy-Riemann operator &, .
Hence, (1.18) can be rewritten as

df = B,f + Y (@ffoz®) i* dz*. (1.19)

We are now in a position to derive the integrability condition for the almost
pseudocomplex structure °7, in a convenient form. In terms of the local
coordinates (z%,..., x*) we have that ¢ = 3, ¢*(&/0z") where ¢* is a scalar-
valued differential form of type (0, 1), . It is then easy to check that

0 = i*dzt + ¢,..., B = i*dz + ¢" (1.20)

form a defining system of °7, . Hence, Proposition 1.4 implies that °7T, is
integrable if and only if

do* = 0 (mod &,..., 97), 1<k<n (1.21)
for any coordinate system (z1,..., z%).

First of all, we note that, by (1.19), for any differentiable function fon U
we have df = &,f — 3 (87//9z%) ¢* (mod 6,..., §”). Hence

dZF =Y [hg' A (B,p% — (97pF/027) @) -+ PFep? A (Bohy — (87hi[027) @],
i
mod(f\,..., 7). (1.22)
Since ¢* = 3, ¢/*Z" and T, plpf = 0, (1.22) implies that

do* = Z [doi n Z' + @i dZ7]
7

=Y @opi* — (@ 91/027) @) A Z8 4 Y gt A i@, pT — (07p'[027) ¢),
il

2.4,

mod(ft,..., 0%). (1.23)
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We observe that 6,Z% = 0 because Z* — dz* is zero on °T". Then condition
(1.23) can be written as

d(pk — ébqjk — Z (a7¢ik/gzj) (Pj AZ - Z higoi A qu"’(ngi _ (8Tpi,/azj) {pj)’
i1 1.4,

mod(t,..., 87). (1.24)

Since T is a holomorphic vector bundle, for any 77 | M,-valued differential
form ¢ = 3, ¢*d/0z%, T, (0,9*)(6/0z") is independent of the choice of z and
hence represents a 7" | M,-valued form which we denote by d,¢. If we write
the right-hand side of (1.24) as @* mod (64,..., %) it is not difficult to check
that @ = 3, @%(9/0z%) is a well-defined 7' | M-valued differential form of
type (0, 2), . Now (1.21) and (1.24) imply the following

PrOPOSITION 1.9. The almost pseudocomplex structure °T. is integrable
if and only if @ = 0.

Let T be an almost complex structure on M determined by o € COY(M, T7).

ProposiTION 1.10. 70 N CTM, = °T, if and only if
o = Z wi(8F — hip* + /12~cpzipk), 1<lI<n, {1.25)

where

i7 ; Sk =1, if k=1
e - I o ) ]
@ ]Z% e ZYo]ez7) and 0. ikl

Proof. Tt follows from Proposition 1.7 that °7, is spanned by
£ =Ly — Z e(07/0z7) = 8/0z" — Z (h; — ha-(pl-i) pi(ojozy — Z p(8]0z7)
7 i g

= z (87 ~ hip’ + hyprp)0]077) — Z i (8/0z7), 1</i<n
i j
Since 7, = {X — o(X)| X € T"}, a vector X; {¥(8/0) + % (8/e7%) belongs
to T, if and only if /! = —3, w;/{*. Hence Z# € 7 if and only if (1.25)
" holds. Q.E.D.

Let b = X oz, g dZ% A ==+ A dZ* be a differential form of type (0, ) on
M. Then we can write i*{ = tis mod (i*d"h) where

1 = z l/f,;l...grzkl A A2 (1.26)

and we say that tJs is the complex tangential part of . If, moreover, ¢ is a
differential form with values in a holomorphic vector bundle of rank m, then
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we can locally express i as an m-tuple of scalar-valued forms (¥,..., ™) and
define #¢ as (t%,..., 14™).

We now assume that ¢ is °7"-valued. This means that ¢ is a form of type
0, 1), with values in 7' | M, such that 7o ¢ = ¢@. In terms of local co-
ordinates z = (z1,..., z*) the last condition can be written as

Yhot =0, 1<I<n (1.27)

In this case, if w e C®YM, T') such that T2 can be defined, then (1.13),
(1.25), (1.26), and (1.27) imply that T, N CTM, = °T,, if and only if ¢ = tw.
Let 2 = 0w — [w, w] where w =Y, ; wi*dzi(0/0z%) and [w, w] = 3.
(Ow[02) o A dZY(E[0zP).

PropositioN 1.11. Let ¢ be a T'| Myvalued differential form of type
0, 1), sarisfying (1.27). Let D = 3, D*(9/0z%) be the form defined by (1.24).
If we CONM, T') is such that ¢ = tw, then

12 =0 — Y wlph,d(8/0z%). (1.28)
@i,k

Proof. Let h;; = 0h;/0%, h;,; = 0h;/02, h; ; = 0h,[07, and h; ; = Oh,[07.

Since @;* = w;* — h; Y, wp’, (1.13) and the fact that 3, ; h; ; Z* A Z7 =0
imply that 3, ;(09;*/02) Zi A ZF = 3; ; (Bw;*[0Z%) Z} A ZI: Thus &,p =
tow. Furthermore,

Y (ergt/oz)) ¢ A Z0 = tlw, 0l — Y Y wlpiwihs,Zi A ZV (1.29)
J.7 a ,7,1

By assumption

Z hjw,-j == h;z hja)&"pi on Mg . 1 <i<n (130)
i o,

We now apply the tangential differential operator ©/6z° — AP’ to the
equality (1.30) and sum over i and / after multiplying by Z? A Z!. Since
h; ; = h;; we have that

Z h,‘,,-w,-jzi A Zl = z hj(acu,j/ail) ZZ A ZZ = Z l’lgt éwj - Z hj éb(p‘i.

N4 4.4,0 j j -

.d i j (131)
On the other hand, condition (1.27) implies that &/ = 9,¢7 — 3°; (67 qz’/

z%) ¢ A Z* and 3; hi(07@g’/02)) = — 35 @i’ (0°hy[02") = — 35 by’ But
hij = hy;, 80 X5 k9" A @ = 0. Hence

Z hj@j == Z h]- gb(Pj. (].32)
i i

Finally, we obtain the desired result by combining (1.29), (1.31), and (1.32).
Q.E.D.
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2. A NONCOERCIVE BOUNDARY VALUE PROBLEM

In this section we consider a boundary value problem which will play a
crucial role in the extension of pseudocomplex structures. Our discussion
will be based on the fundamentally important results that have been obtained
in {2, 3].

Let o* be the formal adjoint of 6 with respect to the metric g in M". Let
we CY(M, T'). We will assume that for some sufficiently large integer
& > 0 the Sobolev k-norm || w || is sufficiently small with respect to various
absolute constants which will appear in the sequel and wiil be denoted by C.
For u, v e C*Y(M, T') we consider the bilinear form

O(u, v) = (du, &) + (0*u, 0*v) — 2({ew, u], dv). 2.hH

Let {U,} be a finite set of holomorphic coordinate neighborhoods in M’
which cover M, and let z,2,..., z,” be holomorphic coordinates in U, . For
ue C™(M, T") we define the seminorms

lulf= ¥ [ leugjen P du,
o)

7,0,

lulf = 3 [ Jadjent  du,

i ¥ Uanl

where w =Y, ;,u\$"dz,} A d2,7(0/0z,7) on U, T={i < <i,}, J=
{h < <jgpanddz! = dzir n - A dzls, dZ,7 = dZ A - A dZPe. We define
By =ul?+ fMo [u|2dS + || uis Here| u|?is the Ly-norm on C?%M, T*)
and 45 is the volume element on M, . Let vu be the complex normal com-
ponent of u, i.e., vu consists of all terms in the local expression of i*u which
are divisible by i*dh, and let 229M, T") = {uc C*YM, T)| vu = 0.
Assume g > 0, and for each point on M, the Levi form either has n — ¢
positive eigenvalues or ¢ + 1 negative eigenvalues. Then the basic estimate
of Kohn and Morrey holds (see [2, pp. 130-133; 4, pp. 458-459 and pp. 463—
4641}, i.e., for all u e @22

E2u) < C(lul? +1foul® [ 8%u?). ' (2.2)

Let B¢ = {ue C®(M, T')| tu = 0}. It is easily verified that u € B¢ if and
only if *#u e @M, T'%) where T'* is the dual bundle of 77, * is the
Hodge star-operator, and # is defined as follows: if 4 = }:,', u'(@/ez”) is
the local expression of u# on the coordinate neighborhood U and { g,),;) are
the components of the metric tensor, then (#u)® = Z;’V L(us u‘z’?dza“.
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Hence condition I1 of the Introduction implies that for-all ue B2, ¢ =1, 2,
Jul® -+ fM lu PdS +{ulf < CQlull + 1 oul® + | &*u (). (2.3)
0

On the other hand, it follows from condition I in the Introduction that
if ue B? and Su = 0*u = 0, then u = 0, ¢ = 1, 2. Since the norm D(u) =
D(u, u), D(u, v) = (u, v) -+ (Gu, Ov) - (6*u, 6*v) is completely continuous
with respect to the L,-norm || || , we have that || u |2 < C(| 6u ||z - || %u |]?) for
all u € B2 with g = 1, 2. This together with (2.3) implies that for all u, v € B!

| Qu, w)l = CllulP, (2.4)
GD¥w) < | Q(u, w)| < C;D*w), 2.5)
ClQO(u: M) < | Q(M, u)] < CZQO(us u): 2Q0(ua U) = Q(ua U) + Q(U> u):
(2.6)
| Ql(u> U)lz < CQO(ua u) QO(Ua Z)), 2(_ 1)1/2 Ql(ua U) = Q(u9 U) - Q(U3 u)
2.7)

Let B! be the completion of B! with respect to the norm D(u). Then the
preceding inequalities imply that for each square-integrable 7”-valued form
fof type (0, 1) there exists a unique u € B! for which

Qu, v) = (f, v) for all v € B. (2.3)

Now the space B! satisfies the requirements (a), (b), (¢) given in [3],
pp- 451-452. Moreover, conditions (i), (i)', (iii) of the same paper, pp. 452~
453, hold for the bilinear form Q(u, v). However, condition (ii) is not satis-
fied, i.e., the integrand of Q’(u, v) contains products of first-order derivatives
of u and v. Hence, we cannot directly conclude that if fe C*Y(M, T"), then
u € B. We now proceed to show that one could overcome this difficulty and
obtain the desired regularity result. First we observe that u is C* in the
interior of M because @ is strongly elliptic.

It is easy to see that each point of M, has a neighborhood U which admits
a boundary coordinate system, i.c., a system {¢%,..., 2%, h}, where % is the
function defined in Section 1, the ¢* are C® real-valued functions, and at
every point of U, {dt’,dh) = 0,1 <i < 2n — 1. Let R* = {(t%,..., 2", h)]
h < 0}. If r is a C* function with compact support in R** we define the partial
Fourier transform

e = [ exp(—(=12 1§ rit by d,

2.9

2n—1

£ = (&,..., &), t = (..., 12271, toE= Y 1

=1
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For real s the operator T is given by

(Ta)é. by = (1 + | EBRHE h). (2.10)
Then the tangential s-norm of r is
hrifls =0Tl 2.1

Let D;r = or/ot?, 1 <<j < 2n — 1 be the tangential derivatives of r and
D;, = or/oh be the normal derivative of r. Then the expression || Drll; is
given by

Il Dr s = Il Dar Ill5 + i 7 fi5e - (2.12

We may assume that {0k, 6h) = 1 at every point of U. We can then define
a special moving frame on U to be a set {%,..., {” of (1, 0)-forms on U such
that {* = ok and ({¢, ¥y — 8% at every point of U. If uc C?%M, T"), then,
on UNM,u=(@d..,u") where u*= Y uyl?, (W =10an - alioa
Tin - nl, 1 <a<n If ris a differential function on U, then ry =
dr, [ and ry = {dr, ). Hence du* = 3 uSsz:l! A [V - - and 0%y =
(=Dt m €<mH>u1<mH>§mC " 1 ... where H runs through all the (q — -
tuples and (mH) is the ordered g-tuple consisting of m and H, €pyy, is the
sign of the permutation taking mH into {mH >, and the dots denote terms
which do not contain differential components. It is clear that fu = 0 if and
only if u3;=0 on M, whenever n¢J. The seminorms |[ul|f}=3,,s
laggpsl? and || ul} = Siarsl e are equivalent to || «]2 and [lu %,
respectively. If the support of u lies in U N M, then we set || ulll, = 5./,
W wizllis and || Dullls = 21 4., || Duizllls - We also have

G, o) < [l el Il 0 1H—s - @213

A linear operator 4 ; C,;>(R*) — C=(R*") is called an operator of tan-
gential order p if for each real s there is a constant C, such that ||| 4r |||, <
Ci Il r[llse, for all re Cy=(R_"), ie., for all C= functions r with compact
support on R*". Let #(R*") be the space of all C* functions which together
with their derivatives die out faster than any power of | ¢ | 4 | 2| at infinity.
It is well known that the operator defined by multiplication by such a function
is of tangential order zero. Hence, if L is a first-order differential operator
with coefficients in (R, then

I Lr llfs < Co [l Dril]; - 214

Let =7, be the set of all operators A of tangential order p such that 4 =
{Tom wzth L, 9 € Cy>(R®™). Each 4 € o, has the following properties: 4 and
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its adjoint 4* are of tangential order p; 4 — A* is of tangential order p — 1;
(4r)(t, 0) = 0 for all r e C,*(R®*") with r(t,0) = 0; if L is a first-order dif-
ferential operator, then for each real s there is a constant C, such that for all
r e Cy*(R*™)

Csll Drilsspr>  [4,L]= AL — LA, (2.15)

litd, L] rils <
4 — A% L] r s < Cs ] Dr [sspmz » (2.16)
L4, [4, L1 rlls < Cslil Dr [lsr0p-2 - ' 2.17)

If ue C»YM, T'), { and » have their supports in U N M we define Au =
3 Au{Y, 4 € of, . The regularity at the boundary follows from certain a
priori estimates derived in [3, pp. 464-466 and pp. 471-472]. A close examina-
tion of the proof of these estimates shows that they hold if we have the
following

LemmA 2.1, There is a constant C, such that for all A € <7, and all u € B*
with support in U N M

| O(du, Aw)} < C(| Q(u, A*Au)t + ||| Du ||j3o). 2.18)

Proof. For forms u we denote by Lu the bracket 2[w, u]. Since Q(u, v) =
D(u, v) — (Lu, dv) is a first-order bilinear form, Lemma 3.1 of [3, p. 460],
gives that

| 20(Au, Au) — Q(A*Au, u) — Q(u, A*Aw)| < C,' || Du |}, . (2.19)
On the other hand, a straightforward calculation shows that
(LA*Au, 8u) = (Lu, 94A*Au) + A[L, A u, 84u)
-+ 2(LAu, [A, 81u) + ([L, A* — A] Au, ou)
+ (Lu, [A* — 4, 3] Auw) -+ ([[L, A], A] u, 5u)
+ (Lu, [[4, &1, A1w) + ([L, Al u, (4* — A) ou)
+ (4% — A) Lu, [4, 8] u) + ([L, 4] u, [4, 3] u)
+ ([4, L] u, [4, 0] w).

Since 4 € o, , Au € BL. Then (2.3), (2.5), and (2.15) with s = 0 imply that

(IL, A u, 8A4u) = O] Du fll,—s - | Q(Au, Au)[*12),

- (2.21)
(LAu, [A, 21u) = O(||| Du |||,y - | Q(Au, Au)/?),

where B = O(R) if | B| < C, | R | for some constant C, depending on p.
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Applying (2.13) with s =1 - p, (2.14) with s = p — 1, and (2.16) with
s =1— p and r = Au, we have that ([L, 4* — A] Au, ou) = O(| DAu ||
| Dulll,—). By (2.12) and (2.15) [| DAu |2, = | Dudu |2, + | Au|l§ =
Ol ADwu |23+ WID», Al w22+ I w 12 = Ol Dant |55+ Il Du li5) =
O(ll D [i;_,)- Thus

([L, A* — A) Au, 3u) = O(|| Du |2, . (2.22)

The same arguments can be used to estimate the fifth term on the right of
(2.21). Hence

(Lu, [A* — A, 8} Au) = O(| Du ;). 223

Applying (2.13) with s =1 — p, (2.14) with s = p — 1, and (2.17) with
s =1 — p we obtain

([[L, 41, A)u, 8u) = O(l|; Du |I;-), 224
(Lu, [[4, 8], A1 w) = O(lll Du |[j3-2)-

Finally, Schwarz’s inequality, (2.15), and the fact that 4 — 4* is of
tangential order p — 1 imply that each of the remaining terms on the right-
hand side of (2.20) is O(||} Du |||>_)).

-1
Now, (2.20), (2.21), (2.22), (2.23), (2.24), and the preceding remark give
the inequality

(LA*Au, u)
= (Lu, 6A*Au) + O(|| Du ||, - | Q(4u, Au [V3) -+ O(l| Du [Z_). (2.25)
If K stands for @ or 9%, then we have the relation
(KA*Au, Ku) = (Ku, KA*Au) + 2 Re(KAu, [4, K] u)
+ 2(—‘1)1/2 Im{([Ka A% — A] Aua Ku) + ([[K: A}s A} u, Ku)

-+ ([Ka A] u, (A* - A) Ku} + ([Ka A] u, {A, K] u)
-+ ([K, A]u, KAu)}. (2.26)

It is now clear that the arguments nsed in the derivation of (2.25) also
imply

D(4*4u, 1) = D(u, A*Au) + O(||| Du |||, - | Q(du, Au /% + O(l| Du || 24).
(2.27)



294 GARO K. KIREMIDJIAN

Hence, by combining (2.25) and (2.27) we have
Q(A4*Au, u)
= O, A*4u) + O(||| Du |f,1 - | Q(Au, Aw)'*) + O(|| Du |I,21). (2.28)

The desired estimate (2.18) is obtained with the aid of (2.19) and (2.28).
Q.E.D.

If || ||; denotes the Sobolev s-norm over M, then the a priori estimates for
the solution u of (2.8) also give the inequality

o llser < Gl S s - (2.29)

Remark 2.2. As a consequence of Stokes’ theorem, the unique solution
u € B! of (2.8) has the property t0*u = 0. Assume that fe C*Y(M, T") and
9*f = 0. Then another application of Stokes’ theorem gives 80*u = 0, and
hence &*u = 0. Thus the equation 8*(du — 2[w, u]) = fhas a unique solution
u € B! which satisfies (2.29)

Our next task is to investigate the dependence of the constant C, in (2.29)
on w.

Lemma 2.3, For each s > 1 there exists a constant C, such that for all r
and a in Cy*(R%™

7y, @l 7 < Cll @il 7 llsca + [ @lhsass I 7. (2:30)
Proof. [Ty,alr = Tar — aTyr

TFuar(, h) = (1 + | £ P [ dn, by 7 — m, B o,

aTa (e, h) = [ atn, DA + | € —n (927 — 0, h) d.
A routine computation shows that

A+ TEPR—-A+1E— [P
SCA+TE=nD [+ A+ 7). 23D

Hence by the Schwarz inequality and (2.31) we have
75, al (&, B2
< CA[ @+ 11 a6, hitdn [ @+ 7B 2w Ry dr

+ [+ | 12y an, B2 dy - [ | 7Gr, B2 dr
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Now, let p(r) = [ (1 + | 7 )| a(y, B)}2 dn. Then p(0) — p(h) = f; o' ») dy.

Since Dya(n, h) = Dya(y, h), it follows that | p(h)| < | p(0)] + || Dal| . Here
p(0) is the Sobolev 1-norm on R*-! which we denote by |a|,. By the
Sobolev inequalities |a |y -+ ||| Dalll is bounded by | @l A similar
reasoning shows that

[ 6120 1 a B2 dy <) alhss 2.32)

We note that the last inequality takes care of the cases when s is an integer
and s is a half-integer. This completes the proof. QE.D.

We now take a covering{V"*}of M and a refinement { U*} such that U«CC p=,
By identifying V* n M with an open set in R?” we define the operator 7® on
U= which is the usual operator T, multiplied by a function in Cy=(V* N M)
and identically one on U® Then another way of defining the tangential
s-norm for a form u is || ulil, = 2, || T¥c“u |2 where (¢%)* is a partition of
unity with respect to the covering {U°}.

TueoreM 2.4. Let u be the unigue solution of (2.8) with tu = t0*u — Q.
Then

[t ler < Conllif Ve =4 1 0 Pmas 1S 10)- (2.33)

Proof. We write

| BT 20| + || B*¥Toooullt — (LT 0%, 3T 0%%)
= (T u, To™u) + ([0, T2 o°u, 0T 2o%u) -+ (T[]0, o] u, 8T *o™u)
+ ([0*, T 0%u, T2o%u) + (T 2[0%, o) 8u, T 20™u)
+ ([0%, T2 o*u, 0% T 2ou) + (T2[0%, o°) u, 0T 2c%u) (2.34)
4 (8, T} 0%6*u, T 2o%u) + (T2[0, 0¥ I*u, T 2o*u)
—([L, TYo%u, 8T o) — (TRIL, 0* u, 8720
— ([o*, T*] o*Lu, T o) — (T2[0%, 0*] Lu, Tyo®u)

where [J,u = [Ju — 28%[w, u] = [Ju — 8*Lu.

We will denote by € and C(¢) small and large constants, respectively.
Using (2.15) we get that the second and sixth terms are bounded by
C(e) Do*u || ; - €] 0T 2o%u||* + || *T 20y ||?}. The third and seventh
terms are obviously bounded by C(e)|l| u {|> + &{)| 8T 20w [? + || 6* T oou ||3.
Application of the commutator to the first half of the inner product and
integration by parts imply that the fourth, fifth, eighth, and ninth terms imply
that they are bounded by C(e)lj u|f -+ {]] 9T 0% |2 + || 8*T *a%u ||?}. Since

640/19/4-2
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[Ts,aD;}r = [T, a]l D;r, we see by Lemma 2.3 that the tenth and the
thirteenth terms are bounded by C(e) w |25 Dullf_y + | 8T 0%u | +
Il LT *0%u |3} 4 C(e)l| w |%454¢ Il #]7 . Finally, the eleventh term can obviously
be bounded by C(e)l|u | + €| 0T *0°u |, and another application of the
commutator and integration by parts leads to bounding the twelfth term by
C(e)|ul + e|| LT 0% |°. At the beginning of this paragraph we assumed
that || w ||; is small with respect to various constants for sufficiently large k.
We may now take, for example, £ > n + 3. Then from (2.34) we obtain (by
using (2.3) and condition I in the Introduction)

| 0T omu[? + || 8*T0%u 2
< CU(T 0, To™) + || Duflsg + luells + e s Ll (235)

On the other hand, the left-hand side of (2.35) is bounded from below by
I DT #Fou |l g2 - Also, [(T*0%f, T*o*w)] < || Ti*o°f llp Il Tio*u [llie < Cle)
I T2 |12 y)5 + €| Ti2o%ulll§;, . Summing over o we have

0 Du [[5e < CUNS amare + I Dt ey -+ T2l + oo s 2 5). (2.36)
Repeating the argument for the term [{| Du ||, twice we get

Mo 13ae < CUS e + 103+l @l T lD. (2.37)

We can now take s =— m - } where m is an integer. By a standard argument

which is given in [3, pp. 465 and 466], and which uses the ellipticity of the
quadratic form Q, we can also estimate all derivatives of # and obtain

Il < CUSM + e lare + 1 @ s 1 211D, (2:38)
Now, || u “12n+1/2 <e€liu ”31+1 + C(e)l| u3, . Thus
Il < CUSM A+ T uli + 1 @ sm 1D (2.39)

Finally, by reduction we get (2.33). Q.E.D.

3. EXTENSIONS OF INTEGRABLE ALMOST PSEUDOCOMPLEX STRUCTURES

It is obvious that if S is a complex structure on M, E” = S N CTM, is an
integrable almost pseudocomplex structure on M,. We will show that if
conditions I and II in the Introduction are satisfied, then any integrable
E"C°T" @ °T" can be extended to a complex structure on M provided E” is
sufficiently close to °T”.
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For functions r € C;*(R%) and a real number p we define a smoothing
operator that has been introduced by Nash in {7] by the formula

R(p)r(x) = [ pix(py) rlx — y) dy ERY

where y(x) is a function whose Fourier transform £{€) = 1 for | £ | < } and
is identically equal to zero for | £ | > | and which is €® in £. Then one can
establish the following inequalities

[ R(P) rlliem Sconstp™fi7le,  lr— R(p)ril <constp™[r|p,.

3.2

Next we define Seeley’s extension operator E; Cy®(R_*) — Cy=(R¥)
[see [8]) by

Er(x',y) = r(x, y), for ¥y <0,
= Y a(x, bpy), for y >0, 3.3)
=0
where x" = (x',..., x*1), and 4, and b, are chosen so that 5, = —2* and

S e b = 1 for every integer m > 0.
This operator has the property that it is bounded in the Sobolev norms
over R_* and R*, respectively,

| Er |l < const ||, . (3.4)

If N CHRF) - C*R_*) is the restriction, then R'(p)= o R (p)c E;
Co™(R_*y — Cy=(R_*) satisfies the same inequalities as (3.2) with the Sobolev
norms taken over R_4.

We now imbed the differentiable double M of M in some euclidean space.
Then the technique developed by Nash in [7] shows that the smoothing
operator can be defined for arbitrary tensors on M. Furthermore, if U is
boundary coordinate neighborhood in A and 7 = {735} is a compactly-
supported tensor in U N M, then EF = {EZ 5.} is a well-defined compact-
ly-supported tensor in U. Conversely, if J~ is compactly-supported in U, then
T ={Ng22} is well-defined and compactly supported in U n M. By
using partition of unity we can thus conclude that for each real number p we
have a linear map R(p); C>«M, T") — C*4(M, T") such that the following
property is satisfied; for any integers m, k there exists a constant C,, , such
that for all we Co4(M, T")

f} R( P) u ”k-{mz < Cm,k Pm ‘* u “Iu s ” u— R(P) U ?k < ka p——m ” u i:m-;‘/'c . (35>
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THEOREM 3.1. Assume that M and M’ satisfy conditions 1 and 11 in the
Introduction. Let ¢ be a T' | Myvalued C* differential form of type (0, 1),
with sufficiently small Sobolev k-norm | @ |, on M, for some sufficiently
larger integer k, and | ¢ |, < const py* for all 0 <A < Ay, where p, > 1 is a
sufficiently large real number and Ay > k is a sufficiently large integer. Then
there exists w € C*YM, T") such that G(w) = 0 and tw = ¢ where G(w) =
9*(0w — [w, w]).

Proof. We will follow the method of Moser given in [6]. If w € C*YM, T")
we can write w = fw + Jwd"h and we observe that i*iw = tw and w €
CO(M, T'). We set i*#w = vw. Take wye C¥YM, T”) such that tw, = o,
and || wy |, < const!| ¢ |,. We can regard w, as an approximate solution
of G(w) = 0 and observe that || G(w,)||x— is sufficiently small if the same is
true for | ¢ |, . The actual solution will be constructed as a limit of a sequence
of approximate solutions wy , wy ,..., W; ,....

Let py, pise.s Pi ... € @ sequence of real numbers with p, as in the state-
ment of the theorem and p;,; = p3/%.

For w € C%YM, T") we define G'(@)() = lim, 4 s HG(w + su) —G(w)) ==
o*(0u — 2[w, u)).

Assume that w, , 0 < 7 <{J, have already been constructed such that

ol <, for small =, (3.6)
| w;ll, < Cp, for some constant C and 4 <A < Ay, 3.7
Wy = Wy “I" fuz ”‘I" R(PH—I) ﬁuid”h, . ’ ) (3.8)

where
G'(R(p;s.1) wy) u; + GR(piy1) @) =0, tu; = 0, é*ui = 0.

We remark that (3.6) and (3.7) hold for w,. The theory developed in
Section 2 allows us to do (3.8) because of the first inequality of (3.5) with
m = 0 and the inductive assumption (3.6). Observe that by construction
fw;, = .

For any / we have

3 1, = Clll GR(Pps11) @511 + || ROPss1) @5 llipiee | GIR(Ps1a) w; llo)- (3.9)

(In (2.33) we have replaced the integer k by £ — 3, i.e., we take k >n + 6
where n = dimg M.)

We first note that fw; ; = fw; = @. We now verify (3.7) for w;,; . Using
(3.5), (3.9), and the inductive assumptions (3.6) and (3.7) we get

;g < Paos iy 4 | R(psan) 71515 < CP:'/\"‘ CA,oP;‘/}rl il 9u; {lo
(3.10)
< CP:'A + 2C,0Con 'P;ﬂ .
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The last quantity is less than or equal to $Cp?,; if p, is sufficiently large and »
sufficiently small. Furthermore, we can establish the following. If, in general,
(o = f, with tu = t0%u = 0, then [,fu = if + N, where N stands for
terms involving the components of u, their first derivatives, and a linear
combination of some of the second derivatives of the components of »u.
Since fu = 0 on M, , the coercive estimates obtained in [1] hold and we have

Thelly < Gl e 1 N hie) for some constant C,’.  (3.11}

‘We now apply this argument to ¥ = u; . Again with the aid of (3.5) and (3.9}
we can establish that for some constant C}

1w 1 << G G(R(pj—i;l)) ;e
+ 1 R(Pa+1) w; Masre—s | GCR(pysa) o + 1l 5 1))
< Ci(Crgoll w;llh -+ C,\~3,7ch+135: @ llg ool - oy ). (3.12)

The same arguments, applied to u; give
91l < CA(Crapisall 05 lh + Crpnliin ;11 | w; 1) (3.13)

Since fw;,; = fw; + fu; we can conclude as before that if % is sufficiently
small and p, is sufficiently large, than || fw;; L, < $Cp},; if A = 4. This and
(3.10) give 3.7) fori =j + 1.

Now, if w=u+rv, uveC"™M,T), then Glw)= Gu) + G{) —
20*[u, v]. Having this remark in mind, an application of (3.5), (3.9), {3.12)
yields the following chain of estimates (for simplicity we will denote by ¢,
constants, depending only on k and A)

Ly — il < adll T e + piya ll P25 s}
< e P51l GR(pss2)) ;s + i || Pt Loy}
< el Pl G@le—s + 1| GR(Prar) @5 — @lhy (3.14)
+ | R(pji) w; — wjllx l oyl + pids || @5 lorons}
< e piit || G(@ll—s + 252 || @; los s}

We will determine o shortly but for now the first condition we impose is
o+ 2k — 2 <Ay, Then

i — o5l Ck{P9+1 | G-z + Pa+1pa+2kv2}- (3.15)

In the next set of estimates we again let ¢, be a constant depending only on
k and A, First of all, we have

1 G-z <11 G(wi) + G (@i )w; — 0 s + el 0y — ;5 17, (3.16)
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We now have

Glw;-1) = Gw;y — R(py) w;y) + G(R(ps) w;_1)
— 20*[w;y — R(ps) ws—y » R(ps) w;]:
G'(wj ) w; — w;y) = 5*(5(‘%' — wjg) — 2w, , w; — w;4])
= 0%(0(w; — wjq) — 2[w;g — R(py) w1, 0; — w;4]
— 2[R(p)) w;—y , w; — w;4])
= G'(R(py) w_)(w; — w;_y) — 20 Hwja

— R(p;) @y, w; — wj_4].

These relations together with (3.5), (3.6), (3.7), (3.8), and (3.16) imply that

| Gz
< elll P — R(py) gy s + || sy — R(p3) sy e + || 0y — w4 |3}
< el P77 P o + 2771 @5en lowr + [l 05 — @iy |} (3.17)
< {07 | @5t losaies + 1l 05 — w5 |
< el b7 P A |l 0y — iy (7

Combining (3.15) and (3.17) we have

| w1 — o;lls < Ck{P;‘CJ:ij_ GP;jfk_z + Pyl'c;:lz | w5 — w4 H% + PfflP?HM} .

Set €5, = Pl ll wiea —w;lle, Where p as well as o are to be determined.
Then the above inequality becomes

e < DI PT DI 4 P+ R (318)

We first choose . > 0 such that —#(u — &) —3 < 0. With the choice of 1 we

now determine ¢ >0 such that §(u + &k —2) — o+ 23(c+ bk —2) < —1

and —3o + $p + 2k — 2 << —1. If A, is sufficiently large we will still have
o + 2k — 2 << A . Hence (3.18) implies the inequality

& < ode” +pit) (3.19)

If one chooses p, < 4c;? and €, = p; || w1 — wp |l < 1/2¢;, (which is certainly
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possible if v is sufficiently small) one finds that ¢; << 1/2¢, for 0 </ <j - 1.
We can now verify (3.6) for w;,; .

41
|l wsn — wole < 2 lwe — wort [ < 2 2 (3.20
a=1 74 a=1
Thus, || w1 || <l woll - 1/2¢4 Say p* < mif | @ I is sufficiently small and

Dy 1s sufficiently large. Thus the induction step is completed and we have the
SEqUENCe Wy, Wy iy Wy ,... Of approximate solution. This is a Cauchy
sequence in HYY(M, T'), the completion of C%YM, T') in the Sobolev
k-norm, because

jt+m J+m
pom — wille < 3 Ny —wpale <5 2, 2% < cpify. (32D
a=j+1 a~3+1

Let w = lim,,,, w; in Hy(M, T'). By the Sobolev imbedding theorem we
actually have that w is of class C* (i.e., the coefficients of w have continuous
derivatives of all order up to s,) if k > s, + n. If k is sufficiently large, so is
s, and (3.17) shows that G(w) = 0. Since tw; = ¢ for all j, we have fw = ¢.
1t remains to show that w is actually of class €%, i.e., w € CSYM, T7).
We will prove by induction on s = A; the following statement: there
exists a constant C, such that

e lls < Cyps® for all sufficiently large /. (3.22),

We note that (3.7) gives (3.22), for all s <{ A, an@ all ;. In order to verify
(322101 We observe that ||, — ol < Yool oy — @ulleis < Corng
3ol % ls1 - An application of (3.9) with / = s -+ 1 gives the mequahty
1ty oz < € | RPasn) i lsns < ¢/ Co1x P25k * 7 for some constant .
Hence “ wj ”s+1 < H Wy Hs+1 + cs s~1, kcs+1 [/ Za-ﬂpoﬁ—i < C pg-Ll if ] is
sufficiently large.

We are now in a position to show that the sequence wy , @y ,..., @; ,... is @
Cauchy sequence in every Sobolev s-norm. For this purpose we consider the
following two statements

| Gl)lls—s < C/p7™, (3.23),
< C lp;fl b} (3~24)s+1

| @1 — @y [l
for all sufficiently large j and for some constant C,". We have already establis-
hed (3.24), and (3.23), follows from (3.17) by taking o sufficiently large which
is possible if A, is sufficiently large.

We first show that (3.23); and (3.24), imply (3.24),,, . Since G(R( p; 1) ws)
= Glw;) — G(w; — R(pj) ;) + 20%[w; — R(pi) o s R(pin) wsl, by
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applying (3.5), (3.9), and (3.22), we obtain a chain of inequalities for all
sufficiently large j with various constants denoted by &, :

H Wiy — Wy “s—l—l ~= sp7+1(1 + H wj s) H G(R(pa+1) W ”s—
< dopfi (1 4 || 0 1)1 Glglis—y + Piis 1l 05 lasria

+ P;'_+1 I Wy |Is+-r+1 Il w; Hs+1) (325)
\ sp9+1(1 + | wj ”s)(“ G((U]) R(pj+1) G(wa')”s—l

+ H R(p]'-!—l) G(wj)Hs—l + p]-rlpj F + p;+ p?s+2+7)
Sp] +1(1 + H wa | s)(p7+1 H G(w])ns 2 + pJ+1pJZS+2+T)

Since we assume (3.24), the sequence {w,} is bounded in the || ||;-norm.
Thus we obtain (3.24),,, with the aid of (3.23), if 7 is sufficiently large and
has been chosen in advance to be sufficiently large with respect to k.

Next we will show that (3.22), (for all s) and (3.24),,, imply (3.23),,4 . In
order to do this we first write (3.16) with k& replaced by s -+ 1. Second, we
use the arguments preceding (3.17) and obtain

I G sy < d{l P51 — R(ps) P51 |ls11
+ @i — R(py) @i llsq1ll @5 — @i llsp1 + 1l 05 — @jg [leaa}
< P77 | wiet ssirsne + P77 @i lovan 257 + 257}
< dAprpi T + P e T P (3.26)

for some constant d,’. Hence (3.23),44 holds if we choose = sufficiently large.
This completes the induction step and establishes (3.24),,, for all 5. But this
means that the sequence {w,} is a Cauchy sequence in every Sobolev s-norm.
Hence w € COYM, T"). Q.E.D.

The results in Section ! indicate that if the almost pseudo-complex structure
E"C°T" @ °T" is sufficiently close to °7”, then E” = °T, for a unique
T’ | My-valued C= differential form ¢ of type (0, 1), satisfying condition
(1.27). On the other hand, it is well known that an almost complex structure
T, on the even-dimensional manifold A/ induced by a T"-valued C* form w
of type (0, 1) is a complex structure if and only if 2 = 8w — [0, w] = 0.
Therefore, in view of Proposition 1.10 we can formulate the extension
problem stated at the beginning of this section as follows.

THEOREM 3.2. Let {M, M'} be a finite manifold, i.e., M is a relatively
compact open subset of M’ with C® boundary M, , such that conditions 1 and 11
are satisfied. Let ¢ be a T'| Myvalued C* differential form of type (0, 1),
with sufficiently small Sobolev norm | o |, for some sufficiently large integer k.
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Assume that the almost pseudocomplex structure °T,, defined by o is integrable
and °T, C °T" @ °T". Then there exists w € COY(M, T') such that tw = ¢ and
Q=0

Proof. By the previous theorem there is w € C%{(M, T”) such that tw = ¢

and 0*2 = 0. Furthermore, the properties of the Poisson bracket trivially
imply that 02 = 2[w, 2]. Since 12 = 0 by Proposition I.11, we have by
(2.3) the inequality

182 <2 w

k121, < 29C3 21 + [ 821D. (3.27)

On the other hand, by condition I we find that
Q< C'||8R]  for some constant C". (3.28)
Combining (3.27) and (3.28) we obtain
182 < mC( + CY 82 (3.29)

Hence 802 = 0 if 5 is sufficiently small. Then (3.28) gives 2 = 0. Q.E.D.
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